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Abstract This study uses the Gaussian 03 program and den-
sity functional theory B3LYP with three basis set methods—
[B3LYP/6-311+G(d,p), B3LYP/6-31+G(2d,p), and B3LYP/6-
31G(d,p)]—to model the highly energetic ionic compound
diguanidinium 5,5'-azotetrazolate (GZT) to research its de-
composition mechanisms and thermodynamic properties.
Molecular-type cracking patterns are proposed, which were
initiated by heterocyclic ring opening, sequential crack-
ing of the two five-membered rings of GZT, and simultaneous
release of N, molecules; whereas proton transfer, bond-
breaking, and atomic rearrangements were performed subse-
quently. Finally, 15 reaction paths and five transition states
were obtained. All possible decomposition species and tran-
sition states, including intermediates and products, were iden-
tified, and their corresponding enthalpy and Gibbs free energy
values were obtained. The results revealed that (1) the maxi-
mum activation energy required is 187.8 kJ mol ', and the
enthalpy change (AH) and Gibbs free-energy change (AG) of
the net reaction are —525.1 kJ mol ! and —935.6 kJ mol ',
respectively; (2) GZT can release large amounts of energy, the
main contribution being from the disintegration of the 5,5'-
azotetrazolate anion (ZT>") skeleton (AH=-598.3 kJ mol );
and (3) the final products contained major amounts of N, gas,
but remaining gas molecules such as HCN and NHj3 were
obtained, which are in agreement with experimental results.
The detailed decomposition simulation results demonstrated

S.-R. Cheng

School of Defense Science, Chung Cheng Institute of Technology
National Defense University, Tahsi, Taoyuan 33509, Taiwan,
Republic of China

K.-F. Cheng - M.-H. Liu - Y.-S. Hong (<)) - C. Chen

Department of Chemical and Material Enginnering, Chung Cheng
Institute of Technology National Defense University, Tahsi,
Taoyuan 33509, Taiwan, Republic of China

e-mail: yshong@ndu.edu.tw

the feasibility of this method to calculate the energies of the
thermodynamic reactions for the highly energetic GZT and
predict the most feasible pathways and the final products.

Keywords Decomposition mechanism - GZT - Heterocyclic
ring opening - High nitrogen energetic material - Molecular
type cracking pattern

Introduction

5,5'-azotetrazolate anion (ZT?") combines with guani-
dinium, aminoguanidinium, diaminoguanidinium, and
triaminoguanidinium cations to form diguanidinium 5,5'-
azotetrazolate (GZT) and its derivatives (shown in Fig. 1),
such as diaminoguanidinium 5,5'-azotetrazolate (AGZT),
bis(diaminoguanidinium) 5,5'-azotetrazolate (DAGZT), and
bis(triaminoguanidinium) 5,5'-azotetrazolate (TAGZT), re-
spectively, which have been reported to be highly energetic
and stable ionic materials [ 1-3]. This series of nonmetal salts
containing a considerably higher mass percentage of nitro-
gen but a lower carbon-hydrogen content with a high posi-
tive heat of formation [4—6] are energetic nitrogen-rich com-
pounds. These salts are potential ingredients of gun propel-
lants and gas generators. Unlike conventional energetic ma-
terial explosives such as TNT, RDX, and HMX, GZT and its
derivatives can derive energy from the combination of a high
heat of formation and generation of a large volume of gases
(mainly nitrogen) at the appropriate energy detonated under
fast decomposition reactions, with a tremendous potential for
application [7—12]. Furthermore, GZT and its derivatives
have the characteristics of an appropriate stability against
impact, friction, and heat [3, 4]. Significant research has been
performed on GZT and its derivatives, and a large number of
studies have investigated its synthesis and characterization in
the past decade [13-19].
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Fig. 1 Structures of GZT and
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AGZT R,=NH,, R,=R;=H TAGZT R,=R,=R;=NH,

In recent years, more reports have been published about
the decomposition mechanisms of GZT and its derivatives
[20-25], and Dames et al. also proposed heterocyclic ring
opening via proton transfer-type decomposition mechanisms
of GZT to interpret the experimental results [24]. Because
the instantaneous explosion pyrolysis process is complicated
in high energetic compound experiments, and the fundamen-
tal reactions cannot be observed and obtained, the experi-
mental final products measurement can only be used to infer
the possible decomposition reaction paths. Alavi et al.
claimed that: “Theoretical calculations can play a crucial role
in resolving the details not available from experiments.”
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[26]. However, only a few studies have been published on
simulation calculations and speculation about the thermody-
namic properties and decomposition mechanisms of this
series of compounds.

Our laboratory proposed an ionic-type fragmentation pat-
tern of the decomposition of GZT previously, and the theo-
retical simulation results revealed that the ZT?~ anion and the
G" cation individual subsequently decomposed, requiring
large activation energies of 477 kJ mol™' and 752 kJ mol ',
respectively [27]. This result motivated us to perform a new
investigation into the theoretical unimolecular decomposi-
tion mechanisms of GZT. It is believed that the stability of
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Fig. 2 The bond distance and bond angles of the GZT molecular structure with a Ci group (distance in A). (a) results by B3LYP/6-31++G(d,p) and

B3LYP/6-31+G(d,p); (b) result by B3LYP/6-31G (d,p) ref [28].
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Fig. 3 Optimized geometries of decomposition species of GZT. (a) B3LYP/6-311+G(d,p) calculated results, (b) B3LYP/6-31+G(2d,p) calculated
results, (¢) B3LYP/6-31G(d,p) calculated results, in A
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Fig. 3 (continued)

GZT is mostly attributed to the attraction forces between the  the decomposition mechanism [30, 31]. As mentioned above,
guanidinium cation (G) and ZT> anion and corresponds  based on the assumptions, by the principle of weaker bonding
partly to localized hydrogen bonding [3, 28, 29]. Storm etal. ~ corresponding to easier cleavage, and more stable small mol-
and Politzer et al. proposed the heterocyclic ring opening of  ecules (for example N, ) are formed. We propose a new
triazoles, through the elimination of N,_as the initial step of ~ molecular-type cracking patterns decomposition mechanism
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Fig. 3 (continued)

of GZT, in which Coulomb attraction forces and hydrogen
bonding between the guanidinium cation (G") and ZT* anion
were taken into account and retained. The patterns were
initiated by heterocyclic ring opening, sequential cracking of
the N-N bond (1.3352 A) and C-N bond (1.3465 A) of the two
five-membered rings of GZT (shown in Fig. 2), and simulta-
neous release of N, molecules. The detailed decomposition
paths and the thermodynamic properties are discussed in this
research.

Computation

Geometrical optimization

The Gaussian 03 program [32] and density functional theory
B3LYP [33] with three basis set methods B3LYP/6-311+
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G(d,p), B3LYP/6-31+G(2d,p), and B3LYP/6-31G(d,p) were
adopted to calculate the optimized geometries of GZT and its
decomposition species.

Modeling of transition states

The transition state species were modeled with the B3LYP/6-
31+G(2d,p) and B3LYP/6-31G(d,p) approaches and were
then identified by applying the QST3(or QST2)-type opti-
mization procedure in the program [34, 35].

Calculation of thermodynamic energy
For GZT, the decomposition intermediates, transition states via
the zero-point energy calculation and thermodynamic values

for the internal energy U (0 K), enthalpy H (298 K), and free
energy G (298 K) can be manually obtained. The activation
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energy can be obtained from the energy difference between
the reactants and the transition states; internal energy change
AU (0 K), enthalpy energy change AH (298 K), and Gibbs
free-energy change AG (298 K) can also be obtained from the
energy differences between the reactants and the products.

Results and discussion
Optimized structures

For convenient description, GZT is named M,, while the
various intermediates in the decomposition reaction are
named M;-N,, M, M,-N,, M, ...etc. All of the species
(M;-N,, M|, M,-N,,...etc.) formed in the thermal decompo-
sition of GZT were modeled as stable with real positive
frequencies. The optimized structures of the decomposition
species and the corresponding enthalpy and Gibbs free ener-
gy were successfully obtained, as shown in Fig. 3 and
Table 1. The thermodynamic energies of the reaction paths
of GZT decomposition were calculated and are listed in
Table 2.

Calculation of transition states

After local minima calculation for the above-mentioned 15
reactions was completed, the transition state of each reaction
was calculated using synchronous transit-guided quasi-
Newton (STQN)-type calculations [34, 35]. In this work

Table 2 Thermodynamic energy of decomposition reaction paths of GZT

the quadratic synchronous transit approach with the QST3
option, implying the geometrical data of suitable reactants,
products, and assigned initial inferred transition state, was
applied to the optimization procedure of the transition states.
This method converges efficiently when provided with an
empirical estimate of the Hessian and suitable starting struc-
tures [34]. In order to prove the transition states to be the
saddle point with only one imaginary frequency, vibration
frequency calculation was followed by geometrical optimi-
zation calculation. Only five transition states were success-
fully identified, and were defined as TSgi, TS124c, TSo4e,
TS514c, and TS»s4c, as shown in Fig. 4. All thermodynamic
energies and activation energies for the transition states are
listed in Tables 3 and 4.

Molecular-type cracking patterns

Molecular-type cracking patterns are proposed, which
were initiated by heterocyclic ring opening, sequential
cracking of the N-N bond (1.3352 A) and C-N bond
(1.3465 A) of the two five-membered rings of GZT
(shown in Fig. 2), and simultaneous release of N, mole-
cules. Proton transfer, bond breaking, and atomic
rearrangements were performed subsequently. Finally, 15
reaction paths and five transition states were obtained. The
molecular-type cracking patterns are shown in Fig. 5, and
are described as follows:

Path 1:The N-N bond and C-N bond of the first five-
membered ring in My (GZT) are broken, and M-N, are

Path Reaction B3LYP/6-311+G(d,p)

B3LYP/6-31+G(2d.p)

B3LYP/6-31G(d,p)

*AU (0K) AH (298 K) AG (298 K) AU (0K) AH (298K) AG (298 K) AU (0K) AH (298 K) AG (298 K)

1 My—M;-N, 475 56.1 26.5 69.1 78.3 4.6 77.7 86.2 56.4
2 M;-N,>M+ N, 2.5 0.2 1.2 0.8 2.1 ~174 2.8 0.6 213
3 M>MN, 71.9 81.9 46.9 92.1 102.3 66.6 108 117.6 86.4

4 MyN,—>My+ N, 3.1 1.2 -22 3.6 1.7 226 74 5.6 -20

5 My—>My+ My 33.2 317 -10.6 34.4 33.1 -10.5 474 46.1 3.2

6 My—Myy, 12.7 124 8.9 134 12.8 12.5 124 12 10.8

7 Mygp—My+ My, 593 57.9 19.2 61.1 59.9 19.4 75.7 74.5 31

8 Myu—Mag, —40.1 -31.6 672 307  -22.1 -59 -40.6  -32.5 —61.2
9 Mpgp—My+N, 28 0.7 216 2.2 -0.2 -20 5.1 3.1 -20.7
10 My —Mayg -617 -598.3 —656.4 -587.9  —570.7 —625.5 -570.7  —553.3 —604.4
11 My p—2N,+2HNC 123 9.3 —62.5 13.3 10.8 —63.4 223 19.9 ~56.9
12 HNC—HCN -53 —54.1 -52.5 -53.1  —53.9 -52.8 622 —63.1 -61.9
13 My —CHNH+H, 157.5 164.9 130.1 100.8 108.2 733 98.9 106.3 713
14 CH,NH—HCN+H, 46 53.7 22.5 49 56.7 25.5 44.6 523 21.1

15 3H,+N,—2NH; -79.7 —94.4 41 954 —110.1 -56.6 —-60.5  —75.2 217

*AU (thermal energy ), AH (thermal enthalpy), AG (Gibbs free energy) (in kJ mol™")
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Fig. 4 Optimized geometries of transition state species of GZT. (b) B3LYP/6-31+G(2d,p) calculated results, (¢) B3LYP/6-31G(d,p) calculated
results, in A

obtained; Path 2: M;-N, overcomes the weak van der Waals ~ opening forms M,-N,, and proton transfer simultaneously

forces (3.244 A, 3.368 A) to release an N, molecule to form  occurs; Path 4: M,-N, also overcomes the weak van der
M;; Path 3: My, as in path 1, the second five-membered ring Waals forces (3.414 A, 4.683 A) to release an N, molecule
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Table 3 Thermodynamic energy of transition state species of GZT

Only one imaginary

frequency v (cm ™)

Only one imaginary frequency v — (cm™') B3LYP/6-31G(d,p)

Species B3LYP/6-31+G(2d,p)

U (0K) H(298K) G (298K)

ESCF

U (0K) H(298K) G (298K)

*
ESCF

—1035.53823 —1035.30789 —1035.28505 —1035.36205 —315.59561

—925.96853
—816.44752
-611.06235
—205.37655

—1035.63747 —1035.37500 —1035.35208 —1035.42877 —322.45641

—926.031964 —925.81194

TSOI

—344.48772
—23.61393

—992.47021
—300.40345

—925.80022
—816.28675

-610.97135
—205.32787

—925.72511
—816.21818
—610.91624
—205.29627

—925.74722
—816.23616
—610.93020

—205.30157

—353.39962
—10.81243

—925.86554
—816.36889
—611.01632

—205.34138

—925.78954
—816.29640
—610.96072
—205.30970

TSIch

—816.529085 —816.31716

—611.106203

TS2dc

—1064.47875
—319.59826

—610.97482

TS21dc

—205.389787 —205.31500

TSZch

*Escr, U (thermal energy), H (thermal enthalpy) G (Gibbs free energy) (in au)

to form M,; Path 5: M,, by the cleavage of two weaker
hydrogen bondings (1.856 A and 2.147 A), decomposes into
M,; and M,, ; Path 6: M,,, by proton transfer of the G*
cation, forms M, ,; Path 7: My, by the destruction of
intermolecular hydrogen bondings (1.680 A and 2.107 A),
decomposes into M, and M,,; Path 8: M, executes bond
breaking and rearrangement of C, N, and H atoms to obtain
M,,sp; Path 9: M,,5p overcomes van der Waals forces (3.052
A and 4.644 A) to release an N, molecule, and forms My, ;;
Path 10: M, cracks in three ways—first, by cracking one
end of M,;;, second, by cracking both ends of M,;;, and
finally, by cleaving the center of=N-N=—to obtain the
same result of M5 ,, which is composed of two N, mole-
cules and two HNC molecules with van der Waals forces and
hydrogen bonding (3.855 A, 2.170 A) to form two straight
lines, a (N=N---HNC), molecule; Path 11: My, over-
comes van der Waals forces and hydrogen bonding (3.855
A,2.170 A ) to obtain two N, molecules and two linear HNC
molecules; Path 12: HNC undergoes rearrangement to obtain
HCN; Path 13: M5, (CH3NH,) undergoes dehydrogenation
to obtain CH,NH and H,; Path 14: CH,NH undergoes de-
hydrogenation to obtain HCN and H,; Path 15: N, and H,
react to form NHj3. Only five transition states were success-
fully calculated and were obtained in path 1, path 3, path 5,
path 6, and path 8.

Decomposition pathways
The corresponding energies (AH and AG) in the 15 reaction
paths are shown in Table 2. If the decomposition mechanism

of GZT is suggested by reaction paths 1 to 11, then the net
equation of the chemical reaction is expressed as Eq. (1):

My—6N; + 2HNC + 2CH;NH, (1)

Table 4 Thermodynamic energy of transition state reaction

Reaction Ea AH AG
(KJmol™)  (kImol™) (kJmol™)
(H)My— TS¢; —M;-N, ©159.47 78.26 42.61
°157.19 86.20 56.41
(3)M; — TS 24c— My-N, 184.78 102.28 66.62
187.75 117.58 86.38
(5My—TSrqc— My +My,  40.01 31.70 10.46
42.83 33.10 3.24
(6)Ma1— TS 140 Maigp 39.93 12.79 12.46
37.78 11.99 10.82
(8)Maz— TS220c—> Masgp 25.25 22.08 59.02
30.60 32.49 62.09

®B3LYP/6-31+G(2d,p) ° B3LYP/6-31G(d,p) calculated method
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Fig. 5 Scheme of the decomposition reaction paths of GZT

The AH and AG values in Eq. (1) are —416.9, and —830.6 k]~ suggested by reaction paths 1 to 12, paths 1 to 13, paths 1 to
mol !, respectively. The other four possible mechanisms are 14, and paths 1 to 15, respectively. Their corresponding chemical
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Table 5 Thermodynamic energy of decomposition net reactions of GZT
Reaction Net reaction B3LYP/6-311+G(d,p) B3LYP/6-31+G(2d,p) B3LYP/6-31G(d,p)
*AU AH AG AU AH AG AU AH AG
(0OK) (298K) (298K) (OK) (298K) (298K) (0K) (298K)  (298K)
(1) path 1- 11~ Mo=6 N,+2 HNC+2 CH3NH, —4549 -4169 -830.6 -361.6 —3239 -—738.6 —295 —2572 —671.6
(2) path 1- 12 M=6 N,+2 HCN+2 CH;3NH, —560.9 —525.1 -935.6 —4679 —431.8 —844.1 4194 3833 -7953
(3) path 1- 13 Mp=6 N,+2 HCN+2 CH,NH+2 H, -364.9 -3145 -7946 -266.3 -202.5 —683.8 -221.6 -170.7 —652.7
(4) path 1- 14 M=6 N,+4 HCN+4 H2 —272.6 2068 -749.2 -1683 —87.4  —6349 -1324 -66.1 -610.5
(5) path 1- 15 Mp=5 N,+4 HCN+H,+2 NH; -358.6 -307.5 -796.5 —263.7 -212.1 -7032 -—192.9 -141.3 —632.2

*AU (thermal energy), AH (thermal enthalpy) AG (Gibbs free energy) (in kJ mol )

equations are expressed as Egs. (2), (3), (4) and (5):

My—6N, 4 2HCN + 2CH3;NH, (2)
M—6N, + 2HCN + 2H, + 2CH,NH (3)
M—6N, + 4HCN + 4H, (4)
My—5N; + 4HCN + H, + 2NH; (5)

The AH and AG values for the above possible decompo-
sition reactions are shown in Table 5. Table 5 reveals that AH
and AG of all five possible decomposition reactions [Egs. (1),
(2), 3), (4) and (5)] are negative. These results indicate that
N,, HNC, CH3NH,, HCN, H,, CH,NH, and NH; can be
produced by spontaneous exothermic reaction (1)-(5). The
order of the negative values of AH and AG in these five
exothermic reactions is reaction (2)>reaction (1)>reaction
(3)>reaction (5)>reaction (4); hence, reaction (2) is much

Table 6 The IR spectra data of HCN and NH; molecules

more favored than the other four possible decomposition re-
actions. Table 2 shows that CH;NH, and CH,NH undergo
dehydrogenation requiring large amounts of energy of
329.7 kJ mol ' and 107.4 kJ mol ', respectively, in path 13
and path 14. This caused the AH values to decrease for
reactions (3)—(4) in Table 5. Some of the N, and H, molecules
formed in the decomposition process react to produce NH;
molecules in the explosive (i.e., high-temperature, high-
pressure) environment. In this study, five possible decompo-
sition reactions were found to occur, and final products such
as N,, HCN, and NH; molecules were obtained; these final
product results are consistent with those of experiments ex-
amining the decomposition reactions of GZT (also named
GAT, or GAZ)[20, 21, 23, 24]. In order to prove the reliability
of the above-mentioned results, the observed data were select-
ed from one of the standard infrared spectra textbook [36] as
shown in Table 6 for theoretical comparison. Table 6 reveals
that theoretically-calculated chemical vibrational frequencies
such as C=N stretching (2106 cm ') and C—H stretching
(3315 cm™") of HCN, and N-H asymmetric stretching (3445
cm ') and N-H symmetric stretching (3350 cm ') of NH,
agree with the standard infrared spectra textbook [36]; the
error in the bond vibrational frequencies is only 0.09%—
0.9% and 0.20%—-2.5% for HCN and NH; molecules, respec-
tively. The IR spectra of NH3 and HCN are shown in Fig. 6.

Vibration type HCN NH;

#vops (cm ™) *vcal (em™')  Error(%)  Vibration type Vobs (cm™ ) veal (em ') Error(%)
C-H out of planer bending 712 719 0.9% N-H out of planer bending 968 993 2.5%
C-H in planer bending 1412 - - N-H in planer bending 1627 1604 1.4%
C=N streching 2089 2106 0.8% N-H symmetric streching 3337 3350 0.2%
C-H streching 3312 3315 0.09% N-H asymmetric streching 3414 3445 0.9%

# obs. extract from ref [36];. *V ¢ (cm™' ) B3LYP/6-311+G(d,p) calculated results scaled by 0.96 at B3LYP ref [45]
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Thermodynamic property analysis

From the point of view of thermodynamics, AH and AG are
very important quantities of chemical reactions for highly
energetic materials. It is especially difficult to obtain exper-
imental thermal chemical data of each elementary reaction of
the decomposition mechanism for the highly energetic mol-
ecule GZT. For this reason, theoretical prediction of AH and
AG is very important. Thermodynamic data obtained from
theoretical calculations using the density functional theory
B3LYP with three basis set methods at 0 and 298 K are listed
in Tables 2 and 4. Table 2 reveals that six reactions are
endothermic and nonspontaneous, which are reaction paths
1, 3, 6, 7, 13, 14. Nine reactions are spontancous, because
AG is less than zero, which are reaction paths 2, 4, 5, 8, 9,
10, 11, 12, 15. Paths 2, 4, 5, 11 are endothermic reactions but
reaction paths 8, 9, 10, 12, 15 are exothermic. There are
many differences in the theoretical calculations among the
three basis set methods. From Table 2, it is interesting to
observe that the largest amounts of energy were released
spontaneously in reaction path 10, and the AH and AG
values are —598.3 kJ mol' and —656.4 kJ mol' with
B3LYP/6-311+G(d,p), respectively, which are higher than
those with B3LYP/6-31+G(2d,p) and B3LYP/6-31G(d,p).
This information indicated that GZT can release large
amounts of energy, the main contribution being from the
disintegration of the 5, 5'-azotetrazolate anion (ZT27) skele-
ton (AH=—598.3 kJ mol "), and it also explains the reason
for which many 5,5'-azotetrazolate salts are highly energetic
compounds [37-44]. The activation energies of the five
transition states and the thermodynamic energies (AH,
AGQG) for each reaction path are listed in Table 4. The data
in Table 4 indicate that the activation energy of the first ring
opening in reaction path 1 was 159.5 kJ mol'. An even
higher activation energy was required for the second ring
opening decomposition, the energy required being 184.8 kJ
mol™'. These results also reveal that the molecular-type
cracking patterns decomposition mechanism of GZT pro-
posed herein is a plausible decomposition path, the activa-
tion energies required being lower than those of the ion-type
decomposition mechanism [27]. It is very difficult to deter-
mine the quantity distribution among the five possible net
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decomposition reactions of GZT. Therefore, we chose the
largest negative value of AH of Eq. (2), which compares
with the result obtained in the experiment. In Table 5, the
largest negative value of AH for the chemical reaction
shown in Eq. (2) is —525.1 kJ mol ' (—441.87 kJ/kg), which
closely approaches the value of molar enthalpy (—426.1
kJ/kg) for the GZT detonation experiment conducted by
Hammel et al. [20]. From the qualitative or quantitative point
of view, these simulation calculations are important and
suggest that the GZT decomposition mechanism is a feasible
and spontaneous exothermic reaction.

Conclusions

In this study, three basis set methods of the Gaussian 03
package were used to successfully complete a prediction of
the possible reaction path and calculation of the thermody-
namic properties of GZT decomposition. Four important
conclusions were obtained:

(1) The optimized geometric structures of the intermedi-
ates, transition states, and final products obtained in this
theoretical simulation are available, so that detailed
elementary reactions that cannot be observed in the real
experiments can be explored.

(2) It was confirmed that GZT can release large amounts of
energy, with the disintegration of the 5,5'-azotetrazolate
anion (ZT*") skeleton being the main contributor.

(3) Thermodynamic properties from calculations using the
B3LYP/6-311+G(d,p) method closely approach the ex-
perimental values of the thermal decomposition of
GZT.

(4) The final products are N,, HCN, and NHj, and their IR
spectra obtained from the simulation calculations are
consistent with experimental measurements.

By research to construct the complete decomposition
path of GZT, by exploration of simulation studies, and
by comparison with experiments, a precise method was
developed to predict the decomposition reaction mecha-
nisms of GZT derivatives such as AGZT, DAGZT, and
TAGZT.
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