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Abstract This study uses the Gaussian 03 program and den-
sity functional theory B3LYP with three basis set methods—
[B3LYP/6-311+G(d,p), B3LYP/6-31+G(2d,p), and B3LYP/6-
31G(d,p)]—to model the highly energetic ionic compound
diguanidinium 5,5′-azotetrazolate (GZT) to research its de-
composition mechanisms and thermodynamic properties.
Molecular-type cracking patterns are proposed, which were
initiated by heterocyclic ring opening, sequential crack-
ing of the two five-membered rings of GZT, and simultaneous
release of N2 molecules; whereas proton transfer, bond-
breaking, and atomic rearrangements were performed subse-
quently. Finally, 15 reaction paths and five transition states
were obtained. All possible decomposition species and tran-
sition states, including intermediates and products, were iden-
tified, and their corresponding enthalpy and Gibbs free energy
values were obtained. The results revealed that (1) the maxi-
mum activation energy required is 187.8 kJ mol–1, and the
enthalpy change (ΔH) and Gibbs free-energy change (ΔG) of
the net reaction are −525.1 kJ mol–1 and −935.6 kJ mol–1,
respectively; (2) GZTcan release large amounts of energy, the
main contribution being from the disintegration of the 5,5'-
azotetrazolate anion (ZT2−) skeleton (ΔH=−598.3 kJ mol–1);
and (3) the final products contained major amounts of N2 gas,
but remaining gas molecules such as HCN and NH3 were
obtained, which are in agreement with experimental results.
The detailed decomposition simulation results demonstrated

the feasibility of this method to calculate the energies of the
thermodynamic reactions for the highly energetic GZT and
predict the most feasible pathways and the final products.

Keywords Decompositionmechanism .GZT .Heterocyclic
ring opening . High nitrogen energetic material . Molecular
type cracking pattern

Introduction

5,5'-azotetrazolate anion (ZT2−) combines with guani-
dinium, aminoguanidinium, diaminoguanidinium, and
triaminoguanidinium cations to form diguanidinium 5,5'-
azotetrazolate (GZT) and its derivatives (shown in Fig. 1),
such as diaminoguanidinium 5,5'-azotetrazolate (AGZT),
bis(diaminoguanidinium) 5,5'-azotetrazolate (DAGZT), and
bis(triaminoguanidinium) 5,5'-azotetrazolate (TAGZT), re-
spectively, which have been reported to be highly energetic
and stable ionic materials [1–3]. This series of nonmetal salts
containing a considerably higher mass percentage of nitro-
gen but a lower carbon-hydrogen content with a high posi-
tive heat of formation [4–6] are energetic nitrogen-rich com-
pounds. These salts are potential ingredients of gun propel-
lants and gas generators. Unlike conventional energetic ma-
terial explosives such as TNT, RDX, and HMX, GZT and its
derivatives can derive energy from the combination of a high
heat of formation and generation of a large volume of gases
(mainly nitrogen) at the appropriate energy detonated under
fast decomposition reactions, with a tremendous potential for
application [7–12]. Furthermore, GZT and its derivatives
have the characteristics of an appropriate stability against
impact, friction, and heat [3, 4]. Significant research has been
performed on GZT and its derivatives, and a large number of
studies have investigated its synthesis and characterization in
the past decade [13–19].
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In recent years, more reports have been published about
the decomposition mechanisms of GZT and its derivatives
[20–25], and Dames et al. also proposed heterocyclic ring
opening via proton transfer-type decomposition mechanisms
of GZT to interpret the experimental results [24]. Because
the instantaneous explosion pyrolysis process is complicated
in high energetic compound experiments, and the fundamen-
tal reactions cannot be observed and obtained, the experi-
mental final products measurement can only be used to infer
the possible decomposition reaction paths. Alavi et al.
claimed that: “Theoretical calculations can play a crucial role
in resolving the details not available from experiments.”

[26]. However, only a few studies have been published on
simulation calculations and speculation about the thermody-
namic properties and decomposition mechanisms of this
series of compounds.

Our laboratory proposed an ionic-type fragmentation pat-
tern of the decomposition of GZT previously, and the theo-
retical simulation results revealed that the ZT2− anion and the
G+ cation individual subsequently decomposed, requiring
large activation energies of 477 kJ mol–1 and 752 kJ mol–1,
respectively [27]. This result motivated us to perform a new
investigation into the theoretical unimolecular decomposi-
tion mechanisms of GZT. It is believed that the stability of
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Fig. 1 Structures of GZT and
its derivatives (AGZT, DAGZT,
and TAGZT)

Fig. 2 The bond distance and bond angles of the GZT molecular structure with a Ci group (distance in Å). (a) results by B3LYP/6-31++G(d,p) and
B3LYP/6-31+G(d,p); (b) result by B3LYP/6-31G (d,p) ref [28].
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Fig. 3 Optimized geometries of decomposition species of GZT. (a) B3LYP/6-311+G(d,p) calculated results, (b) B3LYP/6-31+G(2d,p) calculated
results, (c) B3LYP/6-31G(d,p) calculated results, in Å
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GZT is mostly attributed to the attraction forces between the
guanidinium cation (G+) and ZT2− anion and corresponds
partly to localized hydrogen bonding [3, 28, 29]. Storm et al.
and Politzer et al. proposed the heterocyclic ring opening of
triazoles, through the elimination of N2, as the initial step of

the decomposition mechanism [30, 31]. As mentioned above,
based on the assumptions, by the principle of weaker bonding
corresponding to easier cleavage, and more stable small mol-
ecules (for example N2 ) are formed. We propose a new
molecular-type cracking patterns decomposition mechanism
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Fig. 3 (continued)
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of GZT, in which Coulomb attraction forces and hydrogen
bonding between the guanidinium cation (G+) and ZT2− anion
were taken into account and retained. The patterns were
initiated by heterocyclic ring opening, sequential cracking of
the N-N bond (1.3352 Å) and C-N bond (1.3465 Å) of the two
five-membered rings of GZT (shown in Fig. 2), and simulta-
neous release of N2 molecules. The detailed decomposition
paths and the thermodynamic properties are discussed in this
research.

Computation

Geometrical optimization

The Gaussian 03 program [32] and density functional theory
B3LYP [33] with three basis set methods B3LYP/6-311+

G(d,p), B3LYP/6-31+G(2d,p), and B3LYP/6-31G(d,p) were
adopted to calculate the optimized geometries of GZTand its
decomposition species.

Modeling of transition states

The transition state species were modeled with the B3LYP/6-
31+G(2d,p) and B3LYP/6-31G(d,p) approaches and were
then identified by applying the QST3(or QST2)-type opti-
mization procedure in the program [34, 35].

Calculation of thermodynamic energy

For GZT, the decomposition intermediates, transition states via
the zero-point energy calculation and thermodynamic values
for the internal energy U (0 K), enthalpy H (298 K), and free
energy G (298 K) can be manually obtained. The activation
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energy can be obtained from the energy difference between
the reactants and the transition states; internal energy change
ΔU (0 K), enthalpy energy change ΔH (298 K), and Gibbs
free-energy changeΔG (298 K) can also be obtained from the
energy differences between the reactants and the products.

Results and discussion

Optimized structures

For convenient description, GZT is named M0, while the
various intermediates in the decomposition reaction are
named M1-N2, M1, M2-N2, M2 …etc. All of the species
(M1-N2, M1, M2-N2,…etc.) formed in the thermal decompo-
sition of GZT were modeled as stable with real positive
frequencies. The optimized structures of the decomposition
species and the corresponding enthalpy and Gibbs free ener-
gy were successfully obtained, as shown in Fig. 3 and
Table 1. The thermodynamic energies of the reaction paths
of GZT decomposition were calculated and are listed in
Table 2.

Calculation of transition states

After local minima calculation for the above-mentioned 15
reactions was completed, the transition state of each reaction
was calculated using synchronous transit-guided quasi-
Newton (STQN)-type calculations [34, 35]. In this work

the quadratic synchronous transit approach with the QST3
option, implying the geometrical data of suitable reactants,
products, and assigned initial inferred transition state, was
applied to the optimization procedure of the transition states.
This method converges efficiently when provided with an
empirical estimate of the Hessian and suitable starting struc-
tures [34]. In order to prove the transition states to be the
saddle point with only one imaginary frequency, vibration
frequency calculation was followed by geometrical optimi-
zation calculation. Only five transition states were success-
fully identified, and were defined as TS01, TS12dc, TS2dc,
TS21dc, and TS22dc, as shown in Fig. 4. All thermodynamic
energies and activation energies for the transition states are
listed in Tables 3 and 4.

Molecular-type cracking patterns

Molecular-type cracking patterns are proposed, which
were initiated by heterocyclic ring opening, sequential
cracking of the N-N bond (1.3352 Å) and C-N bond
(1.3465 Å) of the two five-membered rings of GZT
(shown in Fig. 2), and simultaneous release of N2 mole-
cules. Proton transfer, bond breaking, and atomic
rearrangements were performed subsequently. Finally, 15
reaction paths and five transition states were obtained. The
molecular-type cracking patterns are shown in Fig. 5, and
are described as follows:

Path 1:The N-N bond and C-N bond of the first five-
membered ring in M0 (GZT) are broken, and M1-N2 are

Table 2 Thermodynamic energy of decomposition reaction paths of GZT

Path Reaction B3LYP/6-311+G(d,p) B3LYP/6-31+G(2d,p) B3LYP/6-31G(d,p)

*ΔU (0 K) ΔH (298 K) ΔG (298 K) ΔU (0 K) ΔH (298 K) ΔG (298 K) ΔU (0 K) ΔH (298 K) ΔG (298 K)

1 M0→M1-N2 47.5 56.1 26.5 69.1 78.3 42.6 77.7 86.2 56.4

2 M1-N2→M1+ N2 2.5 0.2 −21. 2 0.8 −2.1 −17.4 2.8 0.6 −21.3

3 M1→M2-N2 71.9 81.9 46.9 92.1 102.3 66.6 108 117.6 86.4

4 M2-N2→M2+ N2 3.1 1.2 −22 3.6 1.7 −22.6 7.4 5.6 −20

5 M2→M21+ M22 33.2 31.7 −10.6 34.4 33.1 −10.5 47.4 46.1 3.2

6 M21→M21sp 12.7 12.4 8.9 13.4 12.8 12.5 12.4 12 10.8

7 M21sp→M211+ M22 59.3 57.9 19.2 61.1 59.9 19.4 75.7 74.5 31

8 M22→M22sp −40.1 −31.6 −67.2 −30.7 −22.1 −59 −40.6 −32.5 −61.2

9 M22sp→M221+N2 2.8 0.7 −21.6 2.2 −0.2 −20 5.1 3.1 −20.7

10 M211→M211sp −617 −598.3 −656.4 −587.9 −570.7 −625.5 −570.7 −553.3 −604.4

11 M211sp→2N2+2HNC 12.3 9.3 −62.5 13.3 10.8 −63.4 22.3 19.9 −56.9

12 HNC→HCN −53 −54.1 −52.5 −53.1 −53.9 −52.8 −62.2 −63.1 −61.9

13 M221→CH2NH+H2 157.5 164.9 130.1 100.8 108.2 73.3 98.9 106.3 71.3

14 CH2NH→HCN+H2 46 53.7 22.5 49 56.7 25.5 44.6 52.3 21.1

15 3H2+N2→2NH3 −79.7 −94.4 −41 −95.4 −110.1 −56.6 −60.5 −75.2 −21.7

*ΔU (thermal energy ), ΔH (thermal enthalpy), ΔG (Gibbs free energy) (in kJ mol–1 )
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obtained; Path 2: M1-N2 overcomes the weak van der Waals
forces (3.244 Å, 3.368 Å) to release an N2 molecule to form
M1; Path 3: M1, as in path 1, the second five-membered ring

opening forms M2-N2, and proton transfer simultaneously
occurs; Path 4: M2-N2 also overcomes the weak van der
Waals forces (3.414 Å, 4.683 Å) to release an N2 molecule

TS01 TS12dc
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Fig. 4 Optimized geometries of transition state species of GZT. (b) B3LYP/6-31+G(2d,p) calculated results, (c) B3LYP/6-31G(d,p) calculated
results, in Å
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to form M2; Path 5: M2, by the cleavage of two weaker
hydrogen bondings (1.856 Å and 2.147 Å), decomposes into
M21 and M22 ; Path 6: M21, by proton transfer of the G+

cation, forms M21sp; Path 7: M21sp, by the destruction of
intermolecular hydrogen bondings (1.680 Å and 2.107 Å),
decomposes into M211 and M22; Path 8: M22 executes bond
breaking and rearrangement of C, N, and H atoms to obtain
M22SP; Path 9: M22SP overcomes van der Waals forces (3.052
Å and 4.644 Å) to release an N2 molecule, and forms M221;
Path 10: M211 cracks in three ways—first, by cracking one
end of M211, second, by cracking both ends of M211, and
finally, by cleaving the center of=N–N=—to obtain the
same result of M211sp, which is composed of two N2 mole-
cules and two HNCmolecules with van der Waals forces and
hydrogen bonding (3.855 Å, 2.170 Å) to form two straight
lines, a (N≡N···HNC)2 molecule; Path 11: M211sp over-
comes van der Waals forces and hydrogen bonding (3.855
Å, 2.170 Å ) to obtain two N2 molecules and two linear HNC
molecules; Path 12: HNC undergoes rearrangement to obtain
HCN; Path 13: M221 (CH3NH2) undergoes dehydrogenation
to obtain CH2NH and H2; Path 14: CH2NH undergoes de-
hydrogenation to obtain HCN and H2; Path 15: N2 and H2

react to form NH3. Only five transition states were success-
fully calculated and were obtained in path 1, path 3, path 5,
path 6, and path 8.

Decomposition pathways

The corresponding energies (ΔH andΔG) in the 15 reaction
paths are shown in Table 2. If the decomposition mechanism
of GZT is suggested by reaction paths 1 to 11, then the net
equation of the chemical reaction is expressed as Eq. (1):

M0→6N2 þ 2HNC þ 2CH3NH2 ð1Þ
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Table 4 Thermodynamic energy of transition state reaction

Reaction Ea
( kJ mol–1)

ΔH
( kJ mol–1)

ΔG
( kJ mol–1)

(1)M0→TS01→M1-N2
b159.47 78.26 42.61
c157.19 86.20 56.41

(3)M1→TS12dc→M2-N2 184.78 102.28 66.62

187.75 117.58 86.38

(5)M2→TS2dc→M21+M22 40.01 31.70 10.46

42.83 33.10 3.24

(6)M21→TS21dc→M21sp 39.93 12.79 12.46

37.78 11.99 10.82

(8)M22→TS22dc→M22sp 25.25 22.08 59.02

30.60 32.49 62.09

b B3LYP/6-31+G(2d,p) c B3LYP/6-31G(d,p) calculated method
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TheΔH andΔG values in Eq. (1) are −416.9, and −830.6 kJ
mol–1, respectively. The other four possible mechanisms are

suggested by reaction paths 1 to 12, paths 1 to 13, paths 1 to
14, and paths 1 to 15, respectively. Their corresponding chemical
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Fig. 5 Scheme of the decomposition reaction paths of GZT
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equations are expressed as Eqs. (2), (3), (4) and (5):

M0→6N2 þ 2HCNþ 2CH3NH2 ð2Þ

M0→6N2 þ 2HCN þ 2H2 þ 2CH2NH ð3Þ

M0→6N2 þ 4HCN þ 4H2 ð4Þ

M0→5N2 þ 4HCN þ H2 þ 2NH3 ð5Þ

The ΔH and ΔG values for the above possible decompo-
sition reactions are shown in Table 5. Table 5 reveals thatΔH
andΔG of all five possible decomposition reactions [Eqs. (1),
(2), (3), (4) and (5)] are negative. These results indicate that
N2, HNC, CH3NH2, HCN, H2, CH2NH, and NH3 can be
produced by spontaneous exothermic reaction (1)-(5). The
order of the negative values of ΔH and ΔG in these five
exothermic reactions is reaction (2)>reaction (1)>reaction
(3)>reaction (5)>reaction (4); hence, reaction (2) is much

more favored than the other four possible decomposition re-
actions. Table 2 shows that CH3NH2 and CH2NH undergo
dehydrogenation requiring large amounts of energy of
329.7 kJ mol–1 and 107.4 kJ mol–1, respectively, in path 13
and path 14. This caused the ΔH values to decrease for
reactions (3)–(4) in Table 5. Some of the N2 and H2 molecules
formed in the decomposition process react to produce NH3

molecules in the explosive (i.e., high-temperature, high-
pressure) environment. In this study, five possible decompo-
sition reactions were found to occur, and final products such
as N2, HCN, and NH3 molecules were obtained; these final
product results are consistent with those of experiments ex-
amining the decomposition reactions of GZT (also named
GAT, or GAZ) [20, 21, 23, 24]. In order to prove the reliability
of the above-mentioned results, the observed data were select-
ed from one of the standard infrared spectra textbook [36] as
shown in Table 6 for theoretical comparison. Table 6 reveals
that theoretically-calculated chemical vibrational frequencies
such as C≡N stretching (2106 cm−1) and C–H stretching
(3315 cm−1) of HCN, and N–H asymmetric stretching (3445
cm−1) and N–H symmetric stretching (3350 cm−1) of NH3,
agree with the standard infrared spectra textbook [36]; the
error in the bond vibrational frequencies is only 0.09%–
0.9% and 0.20%–2.5% for HCN and NH3 molecules, respec-
tively. The IR spectra of NH3 and HCN are shown in Fig. 6.

Table 5 Thermodynamic energy of decomposition net reactions of GZT

Reaction Net reaction B3LYP/6-311+G(d,p) B3LYP/6-31+G(2d,p) B3LYP/6-31G(d,p)

*ΔU
(0K)

ΔH
(298K)

ΔG
(298K)

ΔU
(0K)

ΔH
(298K)

ΔG
(298K)

ΔU
(0K)

ΔH
(298K)

ΔG
(298K)

(1) path 1- 11 M0=6 N2+2 HNC+2 CH3NH2 −454.9 −416.9 −830.6 −361.6 −323.9 −738.6 −295 −257.2 −671.6

(2) path 1- 12 M0=6 N2+2 HCN+2 CH3NH2 −560.9 −525.1 −935.6 −467.9 −431.8 −844.1 −419.4 −383.3 −795.3

(3) path 1- 13 M0=6 N2+2 HCN+2 CH2NH+2 H2 −364.9 −314.5 −794.6 −266.3 −202.5 −683.8 −221.6 −170.7 −652.7

(4) path 1- 14 M0=6 N2+4 HCN+4 H2 −272.6 −206.8 −749.2 −168.3 −87.4 −634.9 −132.4 −66.1 −610.5

(5) path 1- 15 M0=5 N2+4 HCN+H2+2 NH3 −358.6 −307.5 −796.5 −263.7 −212.1 −703.2 −192.9 −141.3 −632.2

*ΔU (thermal energy), ΔH (thermal enthalpy), ΔG (Gibbs free energy) (in kJ mol–1 )

Table 6 The IR spectra data of HCN and NH3 molecules

Vibration type HCN NH3

#νobs (cm
–1) *νcal (cm–1) Error(%) Vibration type νobs (cm

–1) νcal (cm–1) Error(%)

C-H out of planer bending 712 719 0.9% N-H out of planer bending 968 993 2.5%

C-H in planer bending 1412 - - N-H in planer bending 1627 1604 1.4%

C≡N streching 2089 2106 0.8% N-H symmetric streching 3337 3350 0.2%

C-H streching 3312 3315 0.09% N-H asymmetric streching 3414 3445 0.9%

# obs. extract from ref [36];. *ν cal (cm
–1 ) B3LYP/6-311+G(d,p) calculated results scaled by 0.96 at B3LYP ref [45]
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Thermodynamic property analysis

From the point of view of thermodynamics,ΔH andΔG are
very important quantities of chemical reactions for highly
energetic materials. It is especially difficult to obtain exper-
imental thermal chemical data of each elementary reaction of
the decomposition mechanism for the highly energetic mol-
ecule GZT. For this reason, theoretical prediction ofΔH and
ΔG is very important. Thermodynamic data obtained from
theoretical calculations using the density functional theory
B3LYP with three basis set methods at 0 and 298 K are listed
in Tables 2 and 4. Table 2 reveals that six reactions are
endothermic and nonspontaneous, which are reaction paths
1, 3, 6, 7, 13, 14. Nine reactions are spontaneous, because
ΔG is less than zero, which are reaction paths 2, 4, 5, 8, 9,
10, 11, 12, 15. Paths 2, 4, 5, 11 are endothermic reactions but
reaction paths 8, 9, 10, 12, 15 are exothermic. There are
many differences in the theoretical calculations among the
three basis set methods. From Table 2, it is interesting to
observe that the largest amounts of energy were released
spontaneously in reaction path 10, and the ΔH and ΔG
values are −598.3 kJ mol–1 and −656.4 kJ mol–1 with
B3LYP/6-311+G(d,p), respectively, which are higher than
those with B3LYP/6-31+G(2d,p) and B3LYP/6-31G(d,p).
This information indicated that GZT can release large
amounts of energy, the main contribution being from the
disintegration of the 5, 5'-azotetrazolate anion (ZT2−) skele-
ton (ΔH=−598.3 kJ mol–1), and it also explains the reason
for which many 5,5'-azotetrazolate salts are highly energetic
compounds [37–44]. The activation energies of the five
transition states and the thermodynamic energies (ΔH,
ΔG) for each reaction path are listed in Table 4. The data
in Table 4 indicate that the activation energy of the first ring
opening in reaction path 1 was 159.5 kJ mol–1. An even
higher activation energy was required for the second ring
opening decomposition, the energy required being 184.8 kJ
mol–1. These results also reveal that the molecular-type
cracking patterns decomposition mechanism of GZT pro-
posed herein is a plausible decomposition path, the activa-
tion energies required being lower than those of the ion-type
decomposition mechanism [27]. It is very difficult to deter-
mine the quantity distribution among the five possible net

decomposition reactions of GZT. Therefore, we chose the
largest negative value of ΔH of Eq. (2), which compares
with the result obtained in the experiment. In Table 5, the
largest negative value of ΔH for the chemical reaction
shown in Eq. (2) is −525.1 kJ mol–1 (−441.87 kJ/kg), which
closely approaches the value of molar enthalpy (−426.1
kJ/kg) for the GZT detonation experiment conducted by
Hammel et al. [20]. From the qualitative or quantitative point
of view, these simulation calculations are important and
suggest that the GZT decomposition mechanism is a feasible
and spontaneous exothermic reaction.

Conclusions

In this study, three basis set methods of the Gaussian 03
package were used to successfully complete a prediction of
the possible reaction path and calculation of the thermody-
namic properties of GZT decomposition. Four important
conclusions were obtained:

(1) The optimized geometric structures of the intermedi-
ates, transition states, and final products obtained in this
theoretical simulation are available, so that detailed
elementary reactions that cannot be observed in the real
experiments can be explored.

(2) It was confirmed that GZT can release large amounts of
energy, with the disintegration of the 5,5'-azotetrazolate
anion (ZT2−) skeleton being the main contributor.

(3) Thermodynamic properties from calculations using the
B3LYP/6-311+G(d,p) method closely approach the ex-
perimental values of the thermal decomposition of
GZT.

(4) The final products are N2, HCN, and NH3, and their IR
spectra obtained from the simulation calculations are
consistent with experimental measurements.

By research to construct the complete decomposition
path of GZT, by exploration of simulation studies, and
by comparison with experiments, a precise method was
developed to predict the decomposition reaction mecha-
nisms of GZT derivatives such as AGZT, DAGZT, and
TAGZT.

Fig. 6 IR spectra of HCN and
NH3 of the final decomposition
products of GZT; B3LYP/6-
311+G (d,p) calculated results
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